Omega Alive
  • Home
    • Omega Alive study
    • Recipes
  • Chrono App
  • Sehat secrets
  • About
    • Services
  • Media & News
  • Contact
  • Home
    • Omega Alive study
    • Recipes
  • Chrono App
  • Sehat secrets
  • About
    • Services
  • Media & News
  • Contact
Search by typing & pressing enter

YOUR CART

Media & News 

5/12/2021 0 Comments

we have to add vegan omega 3 in our diet to fight againts COVID 19

​The human body cannot produce linoleic acid, and it is found mainly in food. Intriguingly, LA plays a significant role in inflammation and immune modulation, which are key elements of the COVID-19 infection. Aside from that, these fatty acids are also essential to maintain cell membranes in the lungs to promote ventilation. LA also helps in the production of prostaglandins that protect against inflammation in the cardiovascular system.
​
Linoleic acid is a small molecule and a free fatty acid essential for many cellular functions. Two fatty acids are essential in the diet – linoleic or omega-6 fatty acid and alpha-linolenic or omega-3 fatty acid. Both are polyunsaturated fatty acids, which means that they contain two or more double bonds

Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients
Several clinical trials are being conducted to investigate the most appropriate treatment for SARS-CoVDue to its anti-inflammatory, immunomodulatory, and other various beneficial properties, omega-3 FA is a natural, inexpensive, and could play a role as a healthier choice of supplement during this ongoing pandemic situation.
Omega-3 fatty acid acting on different elements of the immune response.

Omega-3 fatty acids, through their anti-inflammatory mechanism, inhibit the production of pro-inflammatory mediators like interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and prevent cytokine storm. Some studies also suggest that they dampen the inflammatory response through regulatory T cells (Treg) differentiation. They also exert an anti-viral effect by enhancing the phagocytic activity of cells of the innate immune system- Neutrophils and Macrophages.
​
​
Picture
https://doi.org/10.3947/ic.2020.52.4.478 Copyright © 2020 by The Korean Society of Infectious Diseases, Korean Society for Antimicrobial Therapy, and The Korean Society for AIDS
one review paper suggest that omega-3 PUFA dietary supplementation may be beneficial to reduce the risk of coronavirus complications, progressing to serious outcomes like ARDS, with the need for artificial ventilation in ICU. The rational for such Hypothesis is based on the following data. An increased intake level (long-term supplementation for prevention against infection or short-term supplementation in acute inflammation phase) of omega-3 PUFAs, including both α-linolenic acid (ALA) as precursor and long-chain derivatives (EPA, DPA docosapentaenoic acid and DHA) may increase their overall tissue storage. This higher cell and tissue omega-3 status could lead to a better conversion to SPMs, leading in turn to a more rapid resolution of inflammation, improving the severity of the cytokine storm, and improving finally the outcome of Covid-19 infected patients.(1)

In 2018, the European Society for clinical nutrition and metabolism (ESPEN) expert group recommended the use of omega-3 rich fish oil in enteral and parenteral nutrition, for its general clinical benefits due to its anti-inflammatory and immune-modulating effects [2]: reduction in infection rate, and length of hospital stay in medical and surgical patients admitted to the ICU.
Indeed, in humans, supplementation with EPA and DHA was shown to lead to the incorporation of both omega-3 LC-PUFA in body lipid pools [3]. The rate of incorporation varied between sample types, with the time to maximal incorporation ranging from days (plasma phosphatidylcholine) to months (mononuclear cells), and higher for adipose tissue [41]. In addition, several plasma EPA- and DHA-derived SPMs were shown to respond linearly with the increased intake of EPA and DHA [42].
In connection with these interesting results, various SPMs synthesized from EPA and DHA have already shown protection and resolution of acute lung lesions in ARDS [43]. Omega-3 PUFA, in the form of fish oil, mostly rich in EPA and DHA, have also been used as a treatment in several clinical trials in enteral and parenteral nutrition with ARDS patients. Recent meta-analyses [[44], [45], [46]] demonstrated a beneficial impact of these omega-3 supplementation, especially when the supplementation was limited to enteral nutrition [44]. Even if the doses were different and if various other supplementation (such as antioxidants) occurred in the different trials, the authors highlighted significant benefits obtained in only a few days (28 days) on mortality (−36%), as well as on the duration of ventilation, the length of stay in ICU [44] with enteral supplementation of omega-3 [21,44,45]. In these trials, omega-3 PUFA was provided at high doses to patients with ARDS (from 5 to 20 times the recommended nutritional intake for EPA and DHA).
Considering all these results, administering omega-3 PUFAs appears a reasonable strategy in ARDS. A recent review suggested the systematic use of omega-3 LC-PUFAs if enteral or parenteral nutrition is indicated in the Covid-19 patients admitted in the ICU [47]. In addition to EPA and DHA, recent epidemiological and mechanistic data also suggest a specific role for omega-3 DPA in lung tissue [27,36,48]. Indeed, little studied so far, omega-3 DPA seems to be the starting point for specific routes of synthesis of pro-resolution mediators at the level of the lung [27].



References 
Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R. May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients?. Biochimie. 2020;179:275-280. doi:10.1016/j.biochi.2020.09.003
Calder P.C., Adolph M., Deutz N.E., Grau T., Innes J.K., Klek S., Lev S., Mayer K., Michael-Titus A.T., Pradelli L., Puder M., Vlaardingerbroek H., Singer P. Lipids in the intensive care unit: recommendations from the ESPEN expert group. Clin. Nutr. 2018;37:1–18. doi: 10.1016/j.clnu.2017.08.032.
 Browning L.M., Walker C.G., Mander A.P., West A.L., Madden J., Gambell J.M., Young S., Wang L., Jebb S.A., Calder P.C. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish 1-4. Am. J. Clin. Nutr. 2012;96:748–758. doi: 10.3945/ajcn.112.041343.
21. Calder P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013;75:645–662. doi: 10.1111/j.1365-2125.2012.04374.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Ortega-Gómez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol. Med. 2013;5:661–674. doi: 10.1002/emmm.201202382. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008;8:349–361. doi: 10.1038/nri2294. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Basil M.C., Levy B.D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016;16:51–67. doi: 10.1038/nri.2015.4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
25. Serhan C.N., Arita M., Hong S., Gotlinger K. Lipids, Lipids. 2004. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers; pp. 1125–1132. [PubMed] [CrossRef] [Google Scholar]
26. Rius B., López-Vicario C., González-Périz A., Morán-Salvador E., García-Alonso V., Clària J., Titos E. Resolution of inflammation in obesity-induced liver disease. Front. Immunol. 2012;3:257. doi: 10.3389/fimmu.2012.00257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Morin C., Hiram R., Rousseau E., Blier P.U., Fortin S. Docosapentaenoic acid monoacylglyceride reduces inflammation and vascular remodeling in experimental pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2014;307:H574–H586. doi: 10.1152/ajpheart.00814.2013. [PubMed] [CrossRef] [Google Scholar]
28. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485. [PubMed] [CrossRef] [Google Scholar]
29. Legrand P., Morise A., Kalonji E. Update of French nutritional recommendations for fatty acids. World Rev. Nutr. Diet. 2011;102:137–143. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21865827 [PubMed] [Google Scholar]
30. Ailhaud G., Massiera F., Weill P., Legrand P., Alessandri J.M., Guesnet P. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog. Lipid Res. 2006;45:203–236. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16516300 [PubMed] [Google Scholar]
31. Blasbalg T.L., Hibbeln J.R., Ramsden C.E., Majchrzak S.F., Rawlings R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011;93:950–962. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21367944 [PMC free article] [PubMed] [Google Scholar]
32. Dubuisson C., Dufour A., Carrillo S., Drouillet-Pinard P., Havard S., Volatier J.L. The third French individual and national food consumption (INCA3) survey 2014-2015: method, design and participation rate in the framework of a European harmonization process. Publ. Health Nutr. 2019;22:584–600. doi: 10.1017/S1368980018002896. [PubMed] [CrossRef] [Google Scholar]
33. Tressou J., Buaud B., Simon N., Pasteau S., Guesnet P. Very low inadequate dietary intakes of essential n-3 polyunsaturated fatty acids (PUFA) in pregnant and lactating French women: the INCA2 survey. Prostaglandins Leukot. Essent. Fatty Acids. 2019;140:3–10. doi: 10.1016/j.plefa.2018.11.007. [PubMed] [CrossRef] [Google Scholar]
34. Hibbeln J.R., Nieminen L., Blasbalg T.L., Riggs J., Lands W. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am. J. Clin. Nutr. 2006;83:1483S–1493S. [PubMed] [Google Scholar]
35. Coronavirus COVID-19 (2019-nCoV) https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (n.d.) accessed July 17, 2020.
36. Drouin G., Catheline D., Guillocheau E., Gueret P., Baudry C., Le Ruyet P., Rioux V., Legrand P. Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. J. Nutr. Biochem. 2019;63:186–196. doi: 10.1016/j.jnutbio.2018.09.029. [PubMed] [CrossRef] [Google Scholar]
37. Zhong Y., Catheline D., Houeijeh A., Sharma D., Du L., Besengez C., Deruelle P., Legrand P., Storme L. Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring. Am. J. Physiol. Cell. Mol. Physiol. 2018;315:L116–L132. doi: 10.1152/ajplung.00527.2017. [PubMed] [CrossRef] [Google Scholar]
38. Sharma S., Chhibber S., Mohan H., Sharma S. Dietary supplementation with omega-3 polyunsaturated fatty acids ameliorates acute pneumonia induced by Klebsiella pneumoniae in BALB/c mice. Can. J. Microbiol. 2013;59:503–510. doi: 10.1139/cjm-2012-0521. [PubMed] [CrossRef] [Google Scholar]
39. Hinojosa C.A., Gonzalez-Juarbe N., Rahman M.M., Fernandes G., Orihuela C.J., Restrepo M.I. Omega-3 fatty acids in contrast to omega-6 protect against pneumococcal pneumonia. Microb. Pathog. 2020;141:103979. doi: 10.1016/j.micpath.2020.103979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Calder P.C., Adolph M., Deutz N.E., Grau T., Innes J.K., Klek S., Lev S., Mayer K., Michael-Titus A.T., Pradelli L., Puder M., Vlaardingerbroek H., Singer P. Lipids in the intensive care unit: recommendations from the ESPEN expert group. Clin. Nutr. 2018;37:1–18. doi: 10.1016/j.clnu.2017.08.032. [PubMed] [CrossRef] [Google Scholar]
41. Browning L.M., Walker C.G., Mander A.P., West A.L., Madden J., Gambell J.M., Young S., Wang L., Jebb S.A., Calder P.C. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish 1-4. Am. J. Clin. Nutr. 2012;96:748–758. doi: 10.3945/ajcn.112.041343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Ostermann A., West A., Schoenfeld K., Browning L., Walker C., Jebb S., Calder P., Schebb N. Plasma oxylipins respond in a linear dose-response manner with increased intake of EPA and DHA: results from a randomized controlled trial in healthy humans. Am. J. Clin. Nutr. 2019;109:1251–1263. https://academic.oup.com/ajcn/article-abstract/109/5/1251/5475740?redirectedFrom=fulltext accessed July 21, 2020. [PubMed] [Google Scholar]
43. Hamilton B., Ware L.B., Matthay M.A. Lipid mediators in the pathogenesis and resolution of sepsis and ARDS. In: Vincent J.L., editor. Annu. Updat. Intensive Care Emerg. Med. 2018. 3–11. [CrossRef] [Google Scholar]
44. Langlois P.L., D’Aragon F., Hardy G., Manzanares W. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Nutrition. 2019;61:84–92. doi: 10.1016/j.nut.2018.10.026. [PubMed] [CrossRef] [Google Scholar]
45. Dushianthan A., Cusack R., Burgess V.A., Grocott M.P.W., Calder P.C. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 2019;2019:CD012041. doi: 10.1002/14651858.CD012041.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Dushianthan A., Cusack R., Burgess V.A., Grocott M.P.W., Calder P. Immunonutrition for adults with ARDS: results from a cochrane systematic review and meta-analysis. Respir. Care. 2020;65:99–110. doi: 10.4187/respcare.06965. [PubMed] [CrossRef] [Google Scholar]
47. Thibault R., Seguin P., Tamion F., Pichard C., Singer P. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. Crit. Care. 2020;24:447. doi: 10.1186/s13054-020-03159-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Leng S., Picchi M.A., Tesfaigzi Y., Wu G., James Gauderman W., Xu F., Gilliland F.D., Belinsky S.A. Dietary nutrients associated with preservation of lung function in hispanic and Non-Hispanic white smokers from New Mexico. Int. J. COPD. 2017;12:3171–3181. doi: 10.2147/COPD.S142237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Spragg R.G., Bernard G.R., Checkley W., Curtis J.R., Gajic O., Guyatt G., Hall J., Israel E., Jain M., Needham D.M., Randolph A.G., Rubenfeld G.D., Schoenfeld D., Thompson B.T., Ware L.B., Young D., Harabin A.L. Am. J. Respir. Crit. Care Med. Am J Respir Crit Care Med; 2010. Beyond mortality: future clinical research in acute lung injury; pp. 1121–1127. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50. Koekkoek W. Kristine, Panteleon V., van Zanten A.R. Current evidence on ω-3 fatty acids in enteral nutrition in the critically ill: a systematic review and meta-analysis. Nutrition. 2019;59:56–68. doi: 10.1016/j.nut.2018.07.013. [PubMed] [CrossRef] [Google Scholar]
51. Burdge G.C., Calder P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005;45:581–597. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16188209 [PubMed] [Google Scholar]
52. Ayalew-Pervanchon A., Rousseau D., Moreau D., Assayag P., Weill P., Grynberg A. Long-term effect of dietary α-linolenic acid or decosahexaenoic acid on incorporation of decosahexaenoic acid in membranes and its influence on rat heart in vivo. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H2296–H2304. doi: 10.1152/ajpheart.00194.2007. [PubMed] [CrossRef] [Google Scholar]
53. Brochot A., Guinot M., Auchere D., MacAire J.P., Weill P., Grynberg A. Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure. Nutr. Metab. 2009;6:14. doi: 10.1186/1743-7075-6-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

0 Comments

5/11/2021 0 Comments

Omega-3 supplementation improved the levels of several parameters of respiratory and renal function in critically ill patients with COVID-19- STUDY Says

Picture
​Omega-3 polyunsaturated fatty acids (n3-PUFAs) are important mediators of inflammation and acquired immune responses and can amplify anti-inflammatory responses [9]. Recent studies have been shown that n3-PUFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and α-linoleic acid (ALA) can increase the stability of the cell membrane, regulate immune function, block hyper inflammatory reactions, and reduce the incidence of systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and complications of infection [1].

Study Published in Journal of Translational Medicine examine the effect of n3-PUFA supplementation on inflammatory and biochemical markers in critically ill patients with COVID-19.  Omega-3 supplementation improved the levels of several parameters of respiratory and renal function in critically ill patients with COVID-19.


In this study 128 critically ill patients infected with COVID-19 who were randomly assigned to the intervention (fortified formula with n3-PUFA) (n = 42) and control (n = 86) groups. Data on 1 month survival rate, blood glucose, sodium (Na), potassium (K), blood urea nitrogen (BUN), creatinine (Cr), albumin, hematocrit (HCT), calcium (Ca), phosphorus (P), mean arterial pressure (MAP), O2 saturation (O2sat), arterial pH, partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), bicarbonate (HCO3), base excess (Be), white blood cells (WBCs), Glasgow Coma Scale (GCS), hemoglobin (Hb), platelet (Plt), and the partial thromboplastin time (PTT) were collected at baseline and after 14 days of the intervention. The intervention group had significantly higher 1-month survival rate and higher levels of arterial pH, HCO3, and Be and lower levels of BUN, Cr, and K compared with the control group after intervention (all P < 0.05). There were no significant differences between blood glucose, Na, HCT, Ca, P, MAP, O2sat, PO2, PCO2, WBCs, GCS, Hb, Plt, PTT, and albumin between two groups.

Marcelo M. Rogero, Matheus de C. Leão, Tamires M. Santana, Mariana V. de M.B. Pimentel, Giovanna C.G. Carlini, Tayse F.F. da Silveira, Renata C. Gonçalves, Inar A. Castro,Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19, Free Radical Biology and Medicine, Volume 156,2020,Pages 190-199,ISSN 0891-5849,


Inflammation is critical for COVID-19 patients.
Omega-3 fatty acids can decrease inflammation.
Clinical studies must consider omega-3 fatty acids as a co-therapy in COVID-19. [2]

Refrences

Zhao Y, Wang C. Effect of ω-3 polyunsaturated fatty acid-supplemented parenteral nutrition on inflammatory and immune function in postoperative patients with gastrointestinal malignancy: a meta-analysis of randomized control trials in China. Medicine. 2018;97(16):e0472.
​Marcelo M. Rogero, Matheus de C. Leão, Tamires M. Santana, Mariana V. de M.B. Pimentel, Giovanna C.G. Carlini, Tayse F.F. da Silveira, Renata C. Gonçalves, Inar A. Castro,Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19,Free Radical Biology and Medicine,Volume 156, 2020,Pages 190-199,ISSN 0891-5849,
0 Comments

11/28/2018 0 Comments

अलसी के तेल से निकाला ब्लड प्रेशर और कलेस्ट्रॉल का तोड़

https://navbharattimes.indiatimes.com/lifestyle/health/now-flaxseed-oil-will-be-used-for-the-treatment-of-bp-and-cholesterol/articleshow/65112365.cms
0 Comments

11/28/2018 0 Comments

KGMU research product reaps benefits of Omega3

Read more at: http://timesofindia.indiatimes.com/articleshow/59519683.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
0 Comments

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Archives

    May 2021
    November 2018

    Categories

    All

    RSS Feed

Powered by Create your own unique website with customizable templates.